Part II: Musings on the Biochemistry of Saturn’s Moon Titan

Part II: How can we envision solutions to the challenges for life on Titan?

By Rich Feldenberg
Titan_and_rings

Definitions:
Non-Polar Liquid Solution – NPLS
Polar Non-Aqueous Liquid Solution – PNAL
Titanoids – terpenoid-like molecules used by life on Titan. They provide the subunits (monomers) necessary to make large molecules (polymers), the way amino acids make proteins on earth.
Protiteins – These molecules are build up from the smaller titanoid subunits, and serve the role of proteins for Titan life forms.
Genoids – steroid-like molecules that have been naturally selected by life on Titan to store the genetic information, similar to nucleotides on earth. They can “base pair”, based on complementary physical fit with another specific form of genoid.
Titanite – life forms found on Titan.
Reverse lipid bilayer – a molecular membrane on Titan in the PNAL scheme that has its hydrophobic tail facing the methane solution outside the cell, and its polar head facing the cell interior to remain in contact with the polar solvent concentrated in the cell.

In Part I of this article we discussed the special properties of water that makes it so important for life on earth, and the properties of liquid methane on Titan that make it a poor substitute for life as we know it. So while in Part I we focused on what the problems are for Titan biochemistry to exist, Part II will look at some theoretical solutions to those problems. For methane to be the fluid of life, would require life to take on an entirely different character from what we know. Methane’s non-polar physical character presents major hurdles that may prevent interesting biochemistry from taking place in a such a non-polar liquid solvent (NPLS). While liquid methane is abundant on the surface of Titan, and undergoes a methane cycle, similar to the water cycle on Earth, a non-polar solvent for life would seem problematic at best, and impossible at worst. For that reason we will also consider some other options for life on Titan. We’ll look at the possibility of a Polar Non-Aqueous Liquid Solution (PNAL), that might provide a way for Titanites to survive and evolve by creating an internal environment friendly to polar chemical reactions, like those seen in Earthly life forms. As I said in part I of the article, “We will stick, as much as possible, to the rules of organic chemistry, but Warning, wild speculation ahead”. Ready to jump into a lake of liquid methane? Here we go!

The Non-Polar Liquid Solution (NPLS):
Lets start with the Non-Polar liquid solution (NPLS) possibilities. If we accept methane as our solvent because it is the liquid that happens to be flowing on Titan’s surface, then we’re faced with a difficult dilemma. Methane is a non-polar compound. It’s dipole moment is zero, zip, nadda, in other words, it has no permanent charge separation within the molecule itself – unlike water which has a relatively large dipole moment of 1.85 D. So just like the adage, water and oil don’t mix, on Titan we’re dealing with oil so the things that will dissolve in methane are also going to be non-polar substances or hydrophobic. The kinds of biomolecules that make life possible on earth would not do well in that “hateful” environment. In fact, the very thing that makes life interesting on Earth is that the molecules of life are very reactive, have groups of atoms in the molecules themselves, that are polar and therefore reactive with other polar molecules. This provides the basis of most of the biochemistry of Earth life. So on Titan, in the NPLS scenario we would not expect to find things like Earth-like DNA or proteins. So how could it work?

alkane

We would need non-polar molecules so that they could remain in a methane solution. Due to the extreme cold on Titan, any polar molecules would have too stable of an interaction with each other and precipitate out of solution as a solid. In other words, DNA, and other similar molecules would crystalize out. Not really a very good way for life to get started. On Earth we do have lots of non-polar biomolecules in the form of waxes, oils, and fats. The biochemistry on Titan, in the NPLS would have to be made of something like that. Life also seems to need small building block materials (monomers) that can be polymerized together to make large biomolecules. We need to find non-polar compounds that can, in principle function that way. Two possibilities could be substances similar to terpenoids or steroids.

Let’s look at terpenoids first. Terpenoids are a class of lipids that are made out of multiples of 5 carbon units. Their precursor molecule is isopentenyl diphosphate – a 5 carbon compound attached to a diphosphate group. By using this as the basic building block, you can build up a larger sized molecule with the isopentenyl as the basic unit. Since Titan’s oceans are methane with some ethane, we might imagine our basic building block to be a 2 carbon unit – made from the ethane. That way our biomolecules would be large with an even number of carbons because they are built up from multiples of two. Instead of terpenoids, we’ll call these molecules titanoids, and they could perhaps function in the role of amino acids, being used to build larger biomolecules, the equivalent of proteins – we’ll call these protiteins (pronounced Pro-Tie-Teens). There could be different titanoids used – like the 20 different amino acids on Earth – each with a different non-polar side chain.

Next lets look at the steroids. These are a diverse class of molecules which all have a basic 4 part ring structure. All steroids are themselves derived from a terpenoid compound called lanosterol. The rings, which are labeled A, B, C, and D, can themselves be altered in many ways to give the wide variety of steroids found in plants and animals. Having a hydrocarbon ring system, like in the steroids found on Earth, produces an essentially non-polar and hydrophobic compound. Like terpenoids, they could mix easily in the liquid methane environment found in the cells of Titan organisms. The rings themselves can be boat-shaped if saturated, but flat if aromatic (meaning they have double bonds like benzene that provide an aromatic resonance).

We might imagine the non-polar and very cold environment on Titan to favor a kind of stacking of these rings. They might be produced to fit neatly on top of one in other, so that instead of have a linear molecule composed of many monomers, like Earth protein or DNA, on Titan we might have layers or thick sheets of molecules that are stacked on top of each other, held in place by their Van der Waals forces, to provide the structure. The weak Van der Waals forces would keep the molecules, essentially glued together. This would provide a very different and alien kind of molecular structure than earth organisms which put molecules together with covalent bonding.

We also need some type of information storage molecule to allow a Darwinian type of evolution to take place. We might also imagine steroid-like molecules serving the function of information storage that DNA and RNA can serve on earth. There would not be hydrogen bonding between nucleotide bases possible in the cells hydrophobic methane protoplasm. Instead several different steroid types (lets call these genoids to indicate they form the genetic material based on a steroid structure) might have been chosen in which one molecule seems to make a very good physical fit with one of the other chosen genoid molecules – essentially a lock and key type of interaction based on complementary shape. No hydrogen bonding would be necessary, just the close fitting together of genoid 1 with genoid 2, and genoid 3 with genoid 4. That way there is a template for copying the genetic material, and way to store information in the genoid 1, 2, 3, and 4 code. The back side of the genoids might contain functional groups, such a methyl groups, that would create a steric hindrance so that they can only fit together in the desired base-pairing way.

There could be only 2 genoids, although that would not allow for much coding information, or there could be more than 4. So for example, a “codon” with the genoid sequence 111, might code for titanoid A, and the codon with genoid sequence 112, might code for titanoid B, and so on. The genoids might stack on top of one another but fit together with their complementary sheet, which forms the template for replication. Because dispersion forces, which are terribly weak, are holding the works together, this would only be possible at the extremely low temperatures, like those found on Titan. If the temperature was raised the molecules would fall apart and the organism would essentially melt away. Even the temperature of dry ice (solid carbon dioxide) with a temperature of -109F, would be hot as hell for our friendly little Titanites.

genoid A&B

genoid base pair

Somehow we would have to have a mechanism that allowed the genoid code to be translated into the titanoids to make some sort of polymer structure. Since hydrophobic chemistry is rather boring – I mean only in the sense of being unvaried, not that it is stuffy in any way – because there is no nucleophilic substitutions or eliminations, or so forth, molecular reactions other than simple dipole-dipole and dispersion interactions, would probably have to take place through radical reactions, using some energy source to produce the free radicals.

methane

Polar-Non Aqueous Solution (PNAL):
The PNAL scenario would work by allowing the cells on Titan to essentially evolve to become containers of weakly polar solvent, which keep the polar solvent inside the cell membrane, and the non-polar methane on the outside. There would have to be a way to pump in the polar solvent from the environment and concentrate it in the cell, preventing it from leaking back out. The advantage here is that we then can allow the much more interesting types of chemistry to occur in the cell, with reactions like the nucleophilic substitutions, additions, and eliminations, which can be used to build interesting molecules and metabolize others. This type of life might seem slightly more familiar than the NPLS, that we considered above, but would still be a very alien “life as we don’t know it” variety. We might have to imagine the cell membrane to be a kind of reverse lipid layer, instead of the lipid bilayer found in Earthly cell membranes. The lipid bilayer of Earthly cells has the lipid tails in contact with each other, sandwiched in, while the hydrophilic phosphate heads are facing outward on each side, making contact with the aqueous environment of the interior cell on one side and the water external to the cell on the other side. The reverse lipid layer would have the hydrophobic tail sticking on the outside to interact with the methane environment, but the polar head region (like a phosphate group) on the inside to interact with the polar solvent concentrated in the cell.

The solvent here would still need to be an almost non-polar substance with a very low dipole moment. Any truly polar substance – one having a high dipole moment – would have too much molecular interactions with other molecules of its kind, and would solidify at the temperatures found on Titan’s lakes and rivers. Water has a dipole moment of 1.85D, which is way too high for this environment. In fact, water on Titan’s surface forms rock hard geological structures. One substance that might work would be Arsine (AsH3) which has a dipole moment of 0.20. Arsine, with one Arsenic atom and three hydrogen atoms, might conceivably be a substance that could be found or produced on Titan since Arsenic (As) and Hydrogen (H) are both common elements. The freezing point of Arsine is -168.16F, which is pretty cold but Titan is -291.1F, so this would only work if there were some warmer spots on Titan where there is geothermal energy reaching the surface. If true though, Titanites would drink arsenic the way we drink water! The reverse would be equally true, water would be a deadly poison to their delicate machinery of life.

Arsine-underside-3D-vdW

Arsine

Perhaps a better choice of polar solvent would be Perchloryl fluoride, with a dipole moment of only 0.023D and a freezing point of -234F. This is still a little short of the -291.1F of Titans Lakes, but fairly close so perhaps there could be some “hot spots” where the temperature is a balmy -234F, and the perchloryl fluoride would flow free! Perchloryl fluoride is a molecule made of one chloride, one fluoride, and three oxygen atoms, so it may be something that life on Titan could find or produce and concentrate in their cells. The low dipole moment might still mean that other polar molecules would not react well with it, and there would be the risk of other polar biomolecules freezing out of solution. Getting caught in a slightly cooler zone for PNALs would spell disaster for these little Titan cells, as they would crystalize, whereas the NPLS would seem well suited for the extreme cold of a world far from it’s star.

Since the temperatures are so cold we might also need to consider molecules that are extremely reactive – even too reactive for Earth life. We might consider acid halides in place of the usual functional groups like carboxylic acids, alcohols, esters, and so on. On earth acid halides are too reactive – the halide (such as chloride) would be too good of a leaving group – and they would therefore have no stability. On Titan, however, where the temperatures are so cold the acid halides, like acid chloride for example, might be longer lived so that they might have more stability and could be controlled by cellular process to take part in chemical reactions at the appropriate times.

acyl_chloride

Whether any of this could really play out on Titan or a similar world, I don’t know. This is the fun of pure arm-chair astrobiology. Perhaps some of these ideas could be tested to some degree in the lab. Our only real way of knowing if Titan could support some form of life is to send robotic probes that can go there and conduct the right experiments. I sure hope that a mission like that will happen sometime in our lifetimes. Certainly finding life as we don’t know it would increase our understanding about what life is, and would ultimately mean that life must be very common in the universe if it can manage to find ways to exist on worlds as different as Earth and Titan.

References:

1. Titan: Wikipedia; https://en.m.wikipedia.org/wiki/Titan_(moon)

2. Freezing and Melting Points of some common liquids:
http://www.engineeringtoolbox.com/freezing-points-liquids-d_1261.html

3. “Selected values for electric dipole moments for molecules in the gas phase”, United States Department of Commerce; http://www.nist.gov/data/nsrds/NSRDS-NBS-10.pdf

4. Organic Chemistry; John E. McMurry, 8th edition. ISBN-13: 978-0840054449
5. See my article on Silicon Based Life forms (another variety of life as we don’t know it):
In this case it would presumably be water dependent but not based on carbon.
“Why the Horta would not have looked like a rock monster”;
http://darwinskidneys-science.com/2015/06/18/why-the-horta-would-not-have-looked-like-a-rock-monster/

6. See Part I of this article. “Musings on the Biochemistry of Saturn’s moon Titan, Part I”.
http://darwinskidneys-science.com/2015/08/05/musings-on-the-biochemistry-on-saturns-moon-titan-part-i/

7. McLendon, Christopher, et al. “Solubility of Polyethers in Hydrocarbons at Low Temperatures. A model for Potential Genetic Backbones on Warm Titans”. Astrobiology, Volume 15, Number 3, 2015.

Musings on the biochemistry on Saturn’s moon Titan. Part I

Part I: what makes potential life on Titan such a challenge?
By Rich Feldenberg

Titan_and_rings

As we have been repeatedly surprised by the discoveries made by our robotic explorers over the last few decades, it is certainly clear that our solar system is much more interesting and diverse than we ever previously imagined. There appears to be at least several objects among our cosmic neighbors that show promise as potential habits for life outside of Earth. Some of the prime real estate in this respect would be Mars, Jupiter’s moon Europa, and Saturn’s moon Enceladus. Both Europa and Enceladus show evidence of having liquid water, vast oceans in fact, beneath their frozen crust, and Mars most likely had liquid water on its surface billions of years ago, and perhaps still has liquid water somewhere below the surface. Even Venus may have been covered in water in it’s early history only to evaporate it’s oceans away due to an out of control green house effect. In addition to these, there are other candidates moons and even dwarf planets, that may be home to liquid water beneath a frozen surface, and therefore also a potential abode for living things.

Everything we know about life on earth points to the importance of water in the origin and maintenance of life. If we find life on any of these worlds it will probably be “life as we know it”, in the sense of having a similar biochemistry to earth life with a dependance on liquid water. In fact, it would probably be a consequence of being water based that would contribute to the close similarities in molecules like DNA and proteins, that would most likely be present on a watery world. There may certainly be some important and interesting differences, such as using a different genetic code to specify amino acids, perhaps having a different chirality (i.e. Right handed amino acids instead of left handed ones), and possibly having a different set and number of amino acids, but the basics of DNA to code and store information and proteins made of amino acids to carry out metabolism, will likely look like a odd version of what we have here on earth. But, there may be one place in our solar system where the potential for “life as we don’t know it”, also has the potential to exist. That place is Saturn’s moon Titan.

Titan is unique in the solar system in a number of important respects. For a moon its quite big, being the second largest moon in the solar system – only Jupiter’s moon Ganymede is larger. Titan has twice the diameter of earth’s moon. If it was in orbit around the sun instead of Saturn, it might be considered a planet unto itself. It is also the only moon with a thick atmosphere, as dense as the atmosphere down here on earth. Like Earth, the atmosphere on Titan is primarily nitrogen, but unlike earth there is no oxygen to breath. But perhaps the most remarkable thing about Titan is that there is liquid on it’s surface. Besides Titan, only the earth is known to have a large volume of surface liquid today. As we said before, Mars probably had liquid water on it’s surface billions of years ago that has since evaporated away. Of course, the earth has vast oceans of liquid water, but the liquid on Titan is not water, it’s liquid methane. There are lakes of methane, and evidence for rain and rivers of the stuff! We think that liquid is necessary for the chemistry of life to take place. In solids the molecules are too fixed to react much and gases are usually to dispersed for reactions to have a high chance of occurring, and are difficult to contain. A major difference between Earth and Titan, however, is that Titan is cold – really cold. The surface temperature on Titan is -179.2 degrees celsius or -291 degrees fahrenheit. Now that’s pretty darn cold, and Titan would be even colder if not for the greenhouse effect of methane in its atmosphere. It’s both the extreme cold and the fact that methane is the liquid we have to deal with, that makes any type of biochemistry onTitan so challenging to consider.

Titan_Surface

Water has properties that make it an ideal solvent to dissolve the molecules of life into solution. Could liquid methane serve a similar role on the frozen moon Titan? What would it take for life to find a way to use methane as a solvent for the molecules of “life as we don’t know it”? Let’s look at some of the possibilities for a methane dependent life form that lives in the conditions present on Titan. We will stick, as much as possible, to the rules of organic chemistry, but Warning, wild speculation ahead.

Let’s first look at the major differences between water and methane as your choice of solvent. Every school child knows that water is H2O – made up of two hydrogen atoms covalently bonded to an oxygen atom. It is not a linear molecule, however, but has a bent shape. This creates an electric dipole moment in the molecule, meaning that one side of the molecule is partially negatively charged (the oxygen in this case), and the other end, facing the hydrogens, has a partial positive charge. The electric dipole moment can be measured and it’s value is placed in units of the debye (D), with water having an electric dipole moment of 1.85D. It is this dipole, combined with the fact that oxygen and hydrogen are extremely common throughout the cosmos, that makes water such and interesting, useful, and seemingly indispensable substance. Most organic molecules are electrically neutral – they have no formal charge – but many of the functional groups in the organic molecules do have an uneven distribution of electron sharing, creating a partial charge separation in the chemical bonds between certain atoms. For example, in the carboxyl group there is a partial negative charge on the oxygen and a partial positive charge on the carbon. This means that the carbon can act like an electrophile (attracted to electron rich atoms) and reacts with a partially negative charged molecule, and a nucleophile (attracted to an electron poor atom) will tend to react with the carbon. The reactions due to these kinds of attractive forces are called polar interactions, and it is these types of interactions that create interesting chemistry, and life is all about interesting chemistry.

hydrogenbonding_water

Water can form hydrogen bonds with other water molecules, as in the figure above. Because of waters dipole properties it will interact strongly with other molecules that contain polar covalent bonds, and this allows them to be soluble in a watery solution. This is energetically favorable for polar molecules, because even though they cause the hydrogen bonds of the water matrix to break as they take up space in the solution (energetically unfavorable), they then form polar bonds with the water to replace the broken bonds (energetically stable)- so in a sense, no harm done. This allows the polar molecules to be soluble in water solution, and this is what you want for your biomolecules if you’re a life form – soluble molecules, not ones that precipitate out of solution. Water helps to stabilize polar molecules and is very important for maintaining the proper shape and structure of important biomolecules like DNA and proteins.

Non-polar molecules, on the other hand, really don’t do well in water and they will not go into solution. The non-polar molecules also break the waters hydrogen bonds since they have to fit in the water matrix, but since they are non-polar they can not replace those bonds, and so remain energetically unfavorable. They will tend to form a separate layer from water and stick together to minimize their interaction with water molecules. For this reason, the non-polar molecules are called hydrophobic, which means water fearing or water hating.

Water is also great at dissolving important salts in solution, like sodium chloride (NaCl) for example. The polar nature of water will break the ionic bonds between the sodium atom and the chloride atom apart, and the sodium will be surrounded by a sphere of water with it’s partially negative oxygen atoms facing it, while the chloride will be surrounded by a sphere of water with it’s partially positive hydrogen atoms facing it. Inorganic ions from salts like sodium chloride, potassium chloride, calcium phosphate, magnesium sulfate, and others are vital to the workings of enzymes and stabilizing biomolecules. Would these ions be able to exist in a non-polar methane sea?

Unlike most organic molecules, one group that is non-polar and water hating are the hydrocarbons. Methane is the simplest hydrocarbon, having just one carbon atom covalently bonded to four hydrogens. There is no dipole moment in the methane molecule. Carbon and hydrogen both have approximately the same amount of pull for the electrons. Even if that weren’t so, the symmetrical tetrahedral shape of methane would still cause the polar bonds to cancel each other out. Hydrocarbons with long chains of carbons are also non-polar. Propane is a hydrocarbon with 3 carbons and 8 hydrogens, and octane is one with 8 carbons and 18 hydrogens. Methane is the major liquid on Titan, with some ethane (2 carbons) thrown in for good measure. Hydrocarbons don’t undergo polar reactions. That’s one reason that they can remain liquid at such low temperatures where other organics would freeze solid – they interact so weakly that it is difficult to get them to interact enough that they become solid. These non-polar molecules do have their own very weak interactions, however. They are subject to non-polar forces called Van der Waals forces. These results from a weak induced dipole, as one molecule gets close to another. Say you have a mixture of methane molecules. There is no permanent dipole, but when the hydrogen of one methane gets too close to the hydrogen of another methane the electron of the first will repel the electron of the second one, and that creates a tiny fleeting attraction between the two molecules. It becomes more pronounced at very low temperatures where the heat energy of motion is not too great. At temperatures that we find comfortable, these minuscule interactions are easily overwhelmed by all the thermal motion. If you have very long hydrocarbons, or other non-polar molecules, then the combined Van der Waals forces acting along the different parts of the molecule can make the effect more significant. This would possibly be a very important force in any Titan life form. On Earth, Van der Waals forces certainly have their important places, and can be important in many DNA-protein interactions and some protein-protein interactions, but many of the interactions between biomolecules rely on polar chemistry to create covalent bonds, and this might be difficult to achieve for a living thing on Titan.

In part II of this article we will examine two possible solutions for Titan biochemistry – What I’m calling The Non-Polar liquid solution (NPLS) versus the Polar-Non-Aqueous liquid (PNAL) solution, or the NPLS vs PNAL. By solution, the meaning can equally double as referring to either a mixture of a liquid with another substance or an answer to a problem – either works fine.

References:
1. Titan: Wikipedia; https://en.m.wikipedia.org/wiki/Titan_(moon)

2. Freezing and Melting Points of some common liquids:
http://www.engineeringtoolbox.com/freezing-points-liquids-d_1261.html

3. “Selected values for electric dipole moments for molecules in the gas phase”, United States Department of Commerce; http://www.nist.gov/data/nsrds/NSRDS-NBS-10.pdf

4. Organic Chemistry; John E. McMurry, 8th edition. ISBN-13: 978-0840054449

5. Also see my article on Silicon Based Life forms (another variety of life as we don’t know it):
In this case it would presumably be water dependent but not based on carbon.
“Why the Horta would not have looked like a rock monster”;
http://darwinskidneys-science.com/2015/06/18/why-the-horta-would-not-have-looked-like-a-rock-monster/